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Abstract 

The Land Surface Temperature (LST) indicates the 
spatiotemporal distribution of the energy exchange in the 
Earth's landscapes. We retrieved and validated the LST by 
the Improved Single Channel (ISC) algorithm using 
Landsat 8 data. To perform this approach, we selected a 
dune field with 99.53% of quartz (SiO2) located between the 
municipalities of Cidreira and Tramandaí, state of Rio 
Grande do Sul (RS), Brazil. For LST estimation, prior 
knowledge of Land Surface Emissivity (LSE) is needed, 
and it was calculated with the Normalized Difference 
Vegetation Index (NDVI) threshold. To make it efficient and 
practical, the ISC algorithm was implemented as an 
ArcGIS toolbox. The LST ranged from 297 to 316 K, with a 
mean of 311.7 K and a standard deviation of 2.1 K was 
calculated. In the validation, we reached an error of 0.39 K, 
which is in agreement with other studies, where the errors 
reached from 0.27 to 1 K. This result showed that the ISC 
algorithm has good accuracy and its implementation as a 
toolbox revealed an accurate and practical way to calculate 
the LST using Landsat 8 thermal data. This brings 
advantages for studies of Earth’s energy budget and Urban 
Heat Island (UHI) effects which may require accurate LST 
mapping from many satellite data. 

Introduction 

The Land Surface Temperature (LST) indicates the 
spatiotemporal distribution of the energy exchange in the 
Earth's landscapes (Malbeteau, 2017; Morrison, 2020). It 
is a variable that plays an important role in a variety of 
research fields, such as climate change, urban planning, 
agriculture, environmental monitoring, and geology 
(Jiménez-Muñoz et al., 2014; Rolim et al., 2020; Tardy et 
al., 2016).  

In remote sensing, the LST is largely retrieved using data 
from the Thermal Infrared (TIR) region (Jiménez-Muñoz, 
2014; Käfer et al., 2019; Kuenzer & Dech, 2013; Sobrino 
et al., 2004; Tang & Li, 2014), and satellites such as the 
EOS-Terra, Sentinel-3 and Landsat 8 can provide thermal 
data in moderate spatial and spectral resolutions. The 
Landsat 8, as an example, has the Thermal Infrared 
Sensor (TIRS) onboard that registers the information in two 
bands: 10 (10.6-11.19 µm) and 11 (11.5-12.51 µm), with a 

100-m resolution resampled to 30 m (Ihlen, 2019; Malakar, 
2018).  

Estimating LST through data measured from space is still 
a challenge. It is necessary to know the Land Surface 
Emissivity (LSE) and correct the atmospheric effects on the 
at-sensor radiance. In addition, both variables LST and 
LSE have a non-linear correlation, constituting an 
indeterminate system with infinite solutions.  

To solve this issue, LST retrieval algorithms have been 
developed based on Radiative Transfer Equation (RTE). 
One of the first single channel algorithms consists of the 
RTE inversion (Sobrino et al., 2004). It requires an 
atmospheric vertical profile and radiative transfer model to 
calculate the transmittance, downwelling and upwelling 
radiance of the atmosphere. In order to reduce the 
dependence on excessive atmospheric variables, other 
algorithms were created such as Monowindow (MW) (Qin; 
Karnieli & Berliner, 2001), Generalized Single Channel 
(GSC) (Jiménez-Muñoz et al., 2014), and Improved Single 
Channel (ISC) (Cristóbal et al., 2018). 

The accuracy of these algorithms is influenced by sensor 
type, atmospheric conditions, water vapor content, and 
surface composition. Study by Qin; Karnieli & Berliner 
(2001) showed an error in LST of less than 0.4 K for the 
MW algorithm on Landsat 6 data. Sobrino et al. (2004) 
obtained an error of 0.9-2.2 K with the same algorithm on 
Landsat 5 data. Wang et al (2015) obtained an accuracy of 
1.4 K in LST from Landsat 8 data, while Sobrino et al. 
(2008) found an error of 2.25 K.  

The GSC algorithm developed by Jiménez-Muñoz & 
Sobrino (2003) made the LST estimation dependent only 
on the LSE and water vapor. Many authors reported LST 
errors between 2.94 and 4 K in Landsat 8 data experiments 
(Li & Jiang, 2018; Sobrino et al. 2008; Jiménez-Muñoz et 
al., 2010; Yu et al., 2014). In order to increase the SCG 
accuracy, Cristóbal et al. (2018) developed the ISC 
algorithm, where the mean atmospheric temperature was 
added in the LST retrieval. The ISC presented errors of 1 
K for Landsat 8 data. However, a study by Li et al. (2019) 
showed smaller errors of 0.3-0.7 K in a polar region, 
whereas Käfer et al. (2019) reached an error of 0.27 K in 
the dune field of Cidreira using spectral library emissivity. 

Studies of Earth’s energy budget and UHI effects may 
require an accurate LST mapping from a bulk of satellite 
images, either for spatial-temporal analysis or LST 
estimation of large areas (Tang & Li, 2014). Therefore, this 
paper aimed to validate the LST retrieved by the ISC 
algorithm using Landsat 8 data. To perform the LST 
retrieval efficiently and practical, the ISC algorithm was 
implemented as an ArcGIS toolbox.  
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Methods 

This paper focuses on the validation of the LST retrieved 
by the ISC using Landsat 8 data. We chose this algorithm 
because it has shown high accuracy in field validations 
(Käfer, 2019; Li et al., 2019). For LST estimation, prior 
knowledge of LSE and atmospheric variables is needed. 
Thus, the equations for calculating the LSE, atmospheric 
variables and LST estimation are presented below. 

 

Land Surface Emissivity (LSE) estimation 

The LSE is an intrinsic property of each natural material 
and indicates the fraction of radiation it emits. It is 
necessary to know the LSE to retrieve the LST, as both 
variables are closely associated (Kuznetsov et al. 2012; 
Olsen, 2007). 

Several methods of LSE estimation are known (Tang & Li, 
2014; Sekertekin & Bonafoni, 2020). We chose the 
Normalized Difference Vegetation Index threshold 
(NDVITHM) because NDVI has a statistical relationship with 
emissivity and can be easily derived from the reflectance 
of red and Near Infrared (NIR) bands, respectively bands 
4 and 5 of Landsat 8 (Käfer et al., 2019), according Eq. (1). 

 

wherein  𝜌𝑁𝐼𝑅 is the reflectance of the NIR band and 𝜌𝑟𝑒𝑑 is 

the reflectance of the red band. 

The NDVITHM method makes correlations between the 
NDVI of soil (𝑁𝐷𝑉𝐼𝑠) and vegetation (𝑁𝐷𝑉𝐼𝑣) to estimate the 
emissivity through the following approaches: If 𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑆, 
the pixel assumes the soil emissivity (𝜀𝑠). If 𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑣, 
then the pixel is fully vegetated and assumes the 
vegetation emissivity (𝜀𝑣). If 𝑁𝐷𝑉𝐼𝑠  ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣 is a mixed 
pixel (soil and vegetation), the Eq. (2), (3) and (4) must be 
applied to calculate the emissivity. 

 

 

 

Wherein   is the mixed pixel emissivity; 𝜀𝑠 = 0.94  𝜀𝑣 = 0.99 
(Sobrino & Raissourri, 2000); Pv is the proportion of 
vegetation cover; 𝑁𝐷𝑉𝐼𝑠 = 0.157 e 𝑁𝐷𝑉𝐼𝑣 = 0.727 (Van Griend & 
Owe (2000); dε refers to the cavity effect on rough surfaces 
(dε = 0 for flat surfaces); F is the geometric factor equal to 
0.55 (Sekertekin & Bonafoni, 2020).  

 

Atmospheric Variables 

The atmospheric variables for ISC comprise the water 
vapor content (ω) and the mean atmospheric temperature 
(Ta). They can be obtained using the relative humidity (ϕr) 
and the temperature of the first layer (To), from a weather 

station or vertical profile of the atmosphere, either 
interpolated or from radiosonde. 

A consistent atmospheric vertical profile is provided by the 
Atmospheric Correction Parameter Calculator 
(ATMCORR) (Barsi et al., 2003; 2005). This tool generates 
an interpolated profile with reanalysis data from the 
National Center for Environmental Prediction (NCEP) 
(Saha, 2014). In this study, data from an ATMCORR 
interpolated profile was used in the LST retrieval, 
presented in the results.  

Eq. (5) and (6) were used to calculate the atmospheric 
water vapor content (Leckner, 1978). 

 

wherein ω is the water vapor in g.cm-2 and ϕr is the relative 
humidity in the first layer of the vertical profile. 

 

wherein Ps is the partial pressure and To is the temperature 
in the first layer of the vertical profile. 

According to Qin; Karnieli & Berliner (2001), calculating the 
mean atmospheric temperature (Ta) only uses the 
temperature in the first layer of the vertical profile. Thus, 
we implement the Eq. (7) for the Ta calculation. 

 

wherein To is the temperature in the first layer of the vertical 
profile. 

 

Land Surface Temperature (LST) retrieval 

For LST retrieval, band 10 from Landsat 8 was used in the 
ISC algorithm. We chose this band since it has less 
atmospheric influence if compared to band 11 (Jiménez-
Muñoz et al., 2014). 

First, the radiometric calibration was applied in the band 
10, where digital numbers were converted to at‐sensor 
radiance (Ihlen, 2019). Subsequently, the brightness 
temperature at the Top of the Atmosphere (TOA) was 
derived from at-sensor radiance (Ihlen, 2019). Then, 
brightness temperature, at-sensor radiance, LSE and 
atmospheric variables were used in the ISC algorithm. 

 

Improved Single Channel algorithm 

ISC algorithm was developed by Cristóbal et al. (2018) and 
relies on the LSE, water vapor content, mean atmospheric 
temperature, at-sensor radiance, and brightness 
temperature at TOA for LST retrieval. 

The LST is estimated according to Eq. (8), (9), and (10). 

 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑
𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑

 

𝜀 = 𝜀𝑣P𝑉 + 𝜀𝑠(1 −  P𝑉) +  𝑑ε 

P𝑉 =  
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠
𝑁𝐷𝑉𝐼𝑣 −𝑁𝐷𝑉𝐼𝑠

 
2

 

𝑑ε = (1 − 𝜀𝑠)(1 − P𝑉)F 𝜀𝑣  

Ta = 16.011 + 0.9262To 

(2) 
 
 

(3) 
 
 

(4) 
 

(5) 

(6) 

(7) 

(8) 

(1) 

ᵋ 
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wherein Ts is the LST, ε is the LSE, Lsens is the at‐sensor 
radiance, and ψ1, ψ2, ψ3 are atmospheric functions. The γ 
and δ are derived from the Planck equation, as follows: 

 

 

wherein C1 is equal to 1.19104x108 Wµm-2sr-1 and C2 is 
equal to 14387.7 µm, and λ is the effective wavelength in 
µm. 

We applied Eq. (11), (12), and (13) for atmospheric 
functions. 

 

 

Figure 1 shows the steps of the methods used for the LST 
retrieval. The above equations were implemented as a 
toolbox with the model builder from ArcGIS software 
(ESRI, 2021). This task automatized the algorithm steps 
making practical the LST extraction. 

Is important to note that the NDVITHM method was previously 
implemented as a toolbox by Sekertekin & Bonafoni (2020) 
and Walawender et al. (2012). We used the scheme 
developed by Sekertekin & Bonafoni (2020) modifying only 
the NDVI values of soil and vegetation according to Van 
Griend & Owe (2000). 

 

Figure 1 – Steps for LST retrieval using the ISC 
algorithm. 

 

Data for LST retrieval and validation 

For LST estimation by ISC algorithm and validation, we 
chose a field of transgressive dunes on the north coast of 
Rio Grande do Sul (RS) state, Brazil, between the 
municipalities of Cidreira and Tramandaí (Figure 2). 

 

Figure 2 – Chosen area for LST retrieval. 

This area has about 30 km² and is known as Cidreira field 
dunes. It is an experimental field considered pseudo-
invariant and homogeneous in terms of emissivity and 
composition. The fine sands (sizes between 125-250 μm) 
are composed of 99.53% quartz (SiO2) and 0.47% heavy 
minerals (Käfer et al., 2019; Pittigliani and Rolim, 2017). 

A field campaign at Cidreira dunes was carried out on 
March 14, 2018 by the UFRGS Geologic Remote Sensing 
Laboratory. In the field, the radiance of quartz was 
measured, from which the emissivity (0.9798) and 
radiometric temperature (314.19 K) were derived, see 
Käfer et al. (2019) for more detail.  

Regarding remote sensing data, we acquired a Landsat 8 
OLI/TIRS Level-1 scene (USGS, 2020) registered on 
March 14, 2018, at 1:12 PM, path 220 and row 81, when 
the solar angles were 47.37° (zenith) and 55.75° (azimuth). 

δ = −γLsen + BTTOA 

ψ1 = −7.2122ω2 + 0.00005Ta2− 2.452321ω 

 −0.026275Ta − 0.00005Ta2ω + 0.02317Taω  

+0.04663Taω2− 0.00007Ta2ω2 + 4.47297 

ψ2 = 89.61569ω2− 0.00038Ta
2 + 106.55093ω 

 +0.21578Ta + 0.00141Ta
2ω − 0.78444Taω  

−0.5732Taω2 + 0.00091Ta2ω2− 30.37028 

ψ3 = −14.65955ω2− 0.0001Ta2− 79.95838ω 

 +0.4181Ta − 0.00091Ta2ω + 0.54535Taω  

+0.09114Taω2− 0.00014Ta
2ω2− 3.76184 

(9) 

(11) 
 
 
 
 
 
 

(12) 
 
 
 
 

 
 

(13) 
 

(10) 
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For atmospheric variables, an interpolated profile was 
generated by ATMCORR from which we obtained the 
relative humidity of 70.53% and the temperature in the first 
layer of 298.06K.  

These atmospheric data with the 4, 5, and 10 bands from 
Landsat 8, and emissivity were applied in the LST 
calculation. The quartz emissivity of 0.9798 was assigned 
as soil emissivity and the radiometric temperature of 
314.19 K was used in the validation. The Temperature-
based method was used in this study to validate the LST 
estimated by ISC. According to Sekertekin & Bonafoni 
(2020), this method consists in the comparison between 
LST retrieved from remote sensing data with ground 
measurements at the satellite overpass. 

Remote sensing data, quartz emissivity and atmospheric 
variables from Cidreira dunes were placed as parameters 
in the toolbox for the automatic extraction of LST. Figure 3 
show the tool interface, where the parameters must be 
input to retrieve the LST. Red (B4) and NIR (B5) bands, 
soil emissivity (Es) and vegetation emissivity (Ev) are 
required for LSE estimation. Thermal band (B10), Relative 
Humidity (RH) in percentage and the temperature of the 
first layer (To) in Kelvin are necessary to LST calculation. 

The scene metadata also is needed to provide the 
coefficients used in the radiometric calibration, reflectance 
and brightness temperature calculations. In addition, the 
user must input an area boundary shapefile for which the 
LST is to be calculated. In our study case, a shapefile from 
Cidreira field dunes was used. 

 
 

Figure 3 – Tool interface where the parameters were 
placed.

Figure 4 – LST retrieved over the Cidreira field dunes. 
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Results and Discussions  

The LST over Cidreira field dunes was obtained after 
running the tool. Minimum LST of 297-300 K was 
calculated in small areas where we observed cloud cover. 
Maximum LST of 315-316 K was observed along the dune 
field with a concentration in the southwest region. The 
mean LST was about 311.7 K with a standard deviation of 
2.1 K. Figure 4 shows the LST mapping result and a 
histogram of temperature distribution. 

In the validation, an LST of 313.8 K approximately was 
calculated at the same location as the field measurement. 
When compared with the radiometric temperature of 
314.19 K we obtained an error of 0.39 K. This value is in 
accordance with errors reached with the use of ISC for LST 
retrieval. Cristóbal et al. (2018), as an example, obtained 
an error of 1 K. Li et al. (2019) showed errors of 0.3-0.7 K 
in a polar region, whereas Käfer et al. (2019) obtained an 
error of 0.27 K in a dune field using spectral library 
emissivity, and of 0.6 K for quartz emissivity measured in 
the field. Therefore, we reached a suitable LST error with 
the application of the ISC algorithm.  

Using the ISC algorithm, attention must be given to the 
location for which the LST is calculated, as the accuracy of 
the LST is associated with atmospheric conditions and the 
uncertainties generated in the estimation of the LSE. 
According to Dash (2002), emissivity with 1% of error in a 
high humidity atmosphere can produce an error in the LST 
of 0.3 K, whereas in an atmosphere with low humidity, this 
error in LST can reach 0.7 K. In our application at Cidreira 
field dunes, the target composition for the NDVITHM method 
and the atmospheric conditions were satisfactory to obtain 
a small error in the LST retrieval by ISC algorithm, as 
shown in the validation and in a study by Käfer et al. (2019). 

The toolbox developed and implemented in this study 
performed the LST estimation practical and useful for 
potential final users. It allowed the automatic LST 
extraction through the ISC algorithm of good accuracy.  

 

Conclusions 

This study validated the LST retrieved by the ISC algorithm 
using Landsat 8 data.  We chose the area of Cidreira dunes 
in the state of Rio Grande do Sul (RS), Brazil, for LST 
estimation and validation. The LST ranged from 297 to 316 
K, with a mean of 311.7 K and a standard deviation of 2.1 
K was calculated. In the validation, we reached an error of 
0.39 K, which is in agreement with other studies.  

The accuracy of LST estimation through the ISC algorithm 
depends on the method used in the LSE estimation, 
atmospheric conditions, and land cover type. In this study, 
we chose a dune field pseudo-invariant and composed of 
99.53% quartz, the emissivity measured in-situ was 
assigned as soil emissivity in the NDVITHM method, which 
contributed to a smaller error in the validation. Moreover, 
the atmospheric variables derived from the ATMCORR 
showed suitable for LST estimation. 

In this study, the ISC algorithm showed good accuracy for 
LST retrieval using Landsat 8 thermal data. It was 
implemented as a toolbox for automatic LST retrieval. 

Therefore, this study revealed an accurate and practical 
way to LST calculation using satellite data of moderated 
resolution, bringing advantages for studies of Earth’s 
energy budget and urban heat islands effects which may 
require accurate LST mapping from a bulk of satellite 
images. Finally, we can see this as an advantage for 
studies of climate change, such as the detection of urban 
heat islands, where the retrieval of LST in a big data 
environment can be time consuming.  

 

The ArcGIS Toolbox for automatic LST retrieval using the 
ISC algorithm is available in the Github repository 
https://github.com/savannahtldc/LSTretrievalbyISCtoolbox 
for download. Users that would like to use this tool, please 
cite this paper and don't hesitate to contact the authors for 
any questions. 
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